! \)RAESTANTIA PER SCIENT[AM ’

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

FEATURE SETS FOR SCREENSHOT DETECTION
by
Lauren Sharpe

June 2013

Thesis Co-Advisors: Joel Young
Mathias Kolsch

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE OMFgf,fGo,‘"zf;g‘i,V_eg’lgg

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD-MM-YYYY2. REPORT TYPE 3. DATES COVERED (From — To)
25-6-2013 Master’s Thesis 2011-06-27—2013-06-21
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
FEATURE SETS FOR SCREENSHOT DETECTION

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

Lauren Sharpe
5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT]
NUMBER
Naval Postgraduate School
Monterey, CA 93943
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Department of the Navy 11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol number N/A.

14. ABSTRACT

As digital media capacity continues to increase and the cost continues to decrease, digital forensic examiners need
progressively more efficient, effective, and tailored tools in order to perform useful media triage. This thesis documents the
development of feature sets for classifying images as either screenshots or non-screenshots. Using linear- and intensity-based
image information we developed the first (to our knowledge) screenshot detection algorithm. Four feature sets were developed
and combinations of these feature sets were tested, with the best results achieving an F-score of 0.98 in ten-fold
cross-validation. Requiring less than 0.18 seconds to analyze and classify an image, this is a critical contribution to the
state-of-the-art of media forensics.

15. SUBJECT TERMS

Screenshot Detection, Computer Forensics, Triage, Feature Selection, Machine Learning, Bayes, Hough Transform, Entropy

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF|18. NUMBER|19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT|c. THIS PAGE| ABSTRACT S;GES

. . . 19b. TELEPHONE NUMBER (include area code
Unclassified | Unclassified | Unclassified uu 69 ()

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
i Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited

FEATURE SETS FOR SCREENSHOT DETECTION

Lauren Sharpe
Civilian, Department of the Navy
B.S., University of Virginia, 2011

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 2013
Author: Lauren Sharpe
Approved by: Joel Young

Thesis Co-Advisor

Mathias Ko6lsch
Thesis Co-Advisor

Peter Denning
Chair, Department of Computer Science

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

As digital media capacity continues to increase and the cost continues to decrease, digital foren-
sic examiners need progressively more efficient, effective, and tailored tools in order to perform
useful media triage. This thesis documents the development of feature sets for classifying im-
ages as either screenshots or non-screenshots. Using linear- and intensity-based image informa-
tion we developed the first (to our knowledge) screenshot detection algorithm. Four feature sets
were developed and combinations of these feature sets were tested, with the best results achiev-
ing an F-score of 0.98 in ten-fold cross-validation. Requiring less than 0.18 seconds to analyze

and classify an image, this is a critical contribution to the state-of-the-art of media forensics.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction

1.1 Research Questions
1.2 Computer Vision

1.3 Significant Findings .
1.4 Thesis Structure .

2 Background
2.1 Scene Recognition Related Work .
2.2 Feature Selection .

2.3 Machine Learning .

3 Experiment Design and Implementation
3.1 Features .

3.2 Experimental Framework .

4 Analysis of Experiments
4.1 Feature Set 1: LSP.

4.2 Feature Set 2: LSB

4.3 Feature Set 3: CE .

4.4 Feature Set4: CB .

4.5 Feature Set Combinations .

4.6 Computational Performance .

S Conclusions and Future Work
5.1 Feature Set Improvements . .
5.2 Efficiency-Effectiveness Trade-Off .

vii

W NN =

o O WL W

11
11
16

19
19
25
29
32
35
37

39
39
39

5.3 Requirements Analysis .

5.4 Performance Example .

5.5 Conclusion.

Appendix: Detailed Results

Initial Distribution List

viii

40
40
41
46

53

List of Figures

Figure 3.1
Figure 3.2

Figure 3.3

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16

Intensity Entropies of Images by Class
CB Feature Set Example

Histograms Calculated for CB Feature Set

True Positives Using LSP Feature Set
True Negatives Using LSP Feature Set
False Positives Using LSP Feature Set
False Negatives Using LSP Feature Set
LSP Example Images
True Negatives Using LSB Feature Set with 1000 Bins

True Positives Using LSB Feature Set with 1000 Bins

LSB Feature Values (Ten Bins) for Correctly Classified Images

True positives Using CE Feature Set
True Negatives Using CE Feature Set
False Positives Using CE Feature Set
False Negatives Using CE Feature Set
CE Example Images and Entropy Values
Correctly Classified Images as Bin Size Increase
Results Using All Four Feature Sets

ROC Curve for LSP Feature Set

X

13
14

15

20
21
22
23
24
26
27
28
30
30
31
31
32
34
36
37

THIS PAGE INTENTIONALLY LEFT BLANK

List of Tables

Table 3.1

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8

Table 4.9

CB Calculations

LSP Feature Set Confusion Matrix
LSPResults

LSP Example Image Feature Values . . .

LSB Results as a Function of Line LengthBins

Experiment 3 Confusion Matrix
CEResults
LSP Example Image Feature Values . . .
Results as a Function of Color Bins . . .

Best Results by Feature Set Combination

X1

15

19
19
24
25
29
29
32
33
35

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Acknowledgements

I would like to sincerely thank a number of people who helped me achieve the completion of
my thesis. I have the greatest appreciation for my thesis advisors. Joel Young provided me with
incredible knowledge, insight, opportunities and friendship throughout my time here at Naval
Postgraduate School and during the writing of my thesis. Mathias Kdlsch always guided me in
the right direction when I was lost within my code or writing, and he was a voice of reason and

reassurance.

Thanks to Cynthia Irvine for her commitment to the Scholarship for Service (SFS) program
here at NPS. Finally, I would like to thank my friends and family for simultaneously supporting
my studies and tolerating my sleep-deprivation.

Partial support for this work was provided by the National Science Foundation’s CyberCorps®):
Scholarship for Service (SFS) program under Award No. 0912048. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

CHAPTER 1

Introduction

Computer forensic examiners work to find pockets of information in large quantities of binary
data and tools to triage (or prioritize) this information are invaluable to the examiner. Further-
more, it can be difficult for triage tools to automatically generate meaningful descriptions of

images. One useful image type is the computer screenshot.

There are a number of reasons why a screenshot may exist on a hard drive. A user may in-
tentionally capture his screen or a portion thereof, another process running on the machine
may capture and store screenshots without the knowledge of the user, or the user may have
user manuals or tutorial documents containing screenshots of computer programs as part of
their instructions. Additionally, web browsers such as Firefox capture and cache screenshots
of user activity [1] while some malware screenshots user activity and uploads the screenshots
to servers [2]. Among other purposes, screenshots can be an information source about a user’s
activity and can also indicate a user’s involvement in the production or use of software training

documents.

1.1 Research Questions

In this thesis, we present an algorithm to classify screenshot images vs. non-screenshots em-
ploying established machine learning techniques. We focused on the selection of features that
resulted in the best performance of the machine learning classification algorithms, as judged by

the metrics of accuracy, precision, recall and F-score.

We hypothesized that the features that best distinguish screenshots from non-screenshots are
those that capture information about lines found in the image and the intensity distribution
of the pixels in the image. We expected images generated from computer displays would be
more likely to contain a greater percentage of long horizontal or vertical lines as compared to a
non-computer-generated digital images. We also observed that an image that is not computer-
generated will tend to have a more continuous and even distribution of pixel intensity values
while the intensity distribution of a computer screenshot will be concentrated at certain intensity

values.

From these assumptions, we built sets composed of these distinguishing features. These feature

sets varied from summary values like entropy to larger feature sets consisting of pixel intensity
histograms representing all 256 grayscale values. Instead of only testing individual features
sets, we found the combination of our feature sets that achieved the best performance when

classifying screenshots.

1.2 Computer Vision

To evaluate our feature sets, we employed a number of computer vision techniques. The field
of computer vision encompasses a wide range of techniques and strategies for extracting mean-
ingful semantic information from digital images. As humans, we often discount the difficulty
of seemingly simple vision tasks in our day-to-day lives. In the advent of computer vision re-
search, researchers assumed that the task of computer vision would be incredibly easy—at least
compared to intellectual tasks such as playing chess. In hindsight, however, tasks like chess
seem complex because humans have been playing chess for orders of magnitude less time than
they have been using their senses to perceive the surrounding world [3]. So, while chess is hard
for humans and sight is not, the opposite is true for computers. Today, there are computers
playing chess at the level of a grand master [4], but computer vision has advanced only to the
level of toddler [5, p. 3]. In Chapter 2, we outline the advances in computer vision relevant
to the computer vision task at hand. These advances touch on topics such as machine learning
techniques for classification of images as well as means of generating features for use in the

machine learning algorithms.

1.3 Significant Findings

Our research developed four feature sets

1. Line Segment Percentages (LSP)

2. Line Segments Binned by Length (LSB)
3. Intensity Entropy (CE)

4. Intensity-Based Histograms (CB)

and tested the sets both individually and combinatorially while also varying parameters associ-
ated with the calculations of the feature sets themselves. Our ten-fold cross-validation testing
returned results with F-scores as high as 0.98 (when combining all four feature sets) and F-
scores still between 0.96 and 0.98 when a combination of any three of the feature sets were
used. After testing these four particular feature sets, we were able to determine the best combi-

nation of the feature sets, the marginal successes derived from each added feature set, and the

best parameter choices for the classification algorithm.

1.4 Thesis Structure

The next chapter in this thesis (Chapter 2) provides an overview of the techniques used in this
research as well as a background of the relevant research in this area. Chapter 3 presents the
methodology used as well as a detailed description of the features extracted and machine learn-
ing algorithms employed. Chapter 4 documents the results of the experiments and presents
summary statistics as well as examples of images. Finally, Chapter 5 recaps and draws conclu-

sions about the work performed and develops a road map for future research in this area.

THIS PAGE INTENTIONALLY LEFT BLANK

CHAPTER 2:
Background

This chapter documents the research most relevant to the task of screenshot classification. It
begins with the high-level task of scene recognition and then expands upon the details of lower-

level computer vision techniques applied to perform scene recognition.

2.1 Scene Recognition Related Work

The techniques of computer vision can be applied to a number of problems, from facial recog-
nition to satellite imagery analysis. One such problem is scene recognition. Xiao et al. define
a scene as a “place [within] which a human can act..., or a place to which a human could
navigate” [6]. In the past few decades there has been a significant amount of work on this task
using varying approaches. While scene recognition is a technique for classifying images, more
specifically these images tend to be a digital representation of a physical location. According
to the definition proposed by Xiao et al., our work—screenshot detection—is more accurately
described as classifying non-‘“scenes” from “scenes’ as opposed to the typical scene recognition

task of differentiating one scene category from another.

Scene recognition usually consists of two main components: feature selection and machine
learning. Existing scene recognition research encompasses a variety of features which can
be grouped into related categories. A popular feature category for scene recognition (among
other machine learning tasks) is codewords. Codewords are local invariant descriptors that
are gathered via some means, recorded (often in a dictionary), and applied to recognition or
classification tasks. Textons, scale-invariant feature transform (SIFT) and speeded up robust

features (SURF) are three local feature detectors that are commonly used in recognition tasks.

Stanford’s Fei-Fei Li has done a great amount of work on scene recognition. In a 2005 pa-
per, she presented a method of unsupervised learning with Bayesian classification to categorize
image scenes using codewords as features [7]. Just a year earlier, David Lowe developed a
method for extracting features from images that is invariant to scale and rotation, with the goal
of matching objects between images with different views of an object or scene [8]. This pro-
cess, the scale-invariant feature transform (SIFT), has since been widely applied to the problem
of scene recognition [9, 10]. Others approach the classification task not by identifying individ-

ual elements of an image or scene, but by classifying the overall structure of the image (at a

high-level) into what authors Oliva and Torrabla termed “Spatial Envelopes” [11].

Lowe, in his 2004 paper introducing SIFT features, notes that the success of his proposed fea-
tures lies in their ability to “identify objects among clutter and occlusion” with the intention of
identifying the same object from two differing viewpoints [8, p.1]. Bay et al. improved upon
SIFT feature by developing SURFs, which outperformed SIFT features in a number of areas
including repeatability and speed while maintaining their robustness [12]. For the classifica-
tion task of this thesis, we examine two distinct categories of images, only one of which is a
“scene” in the traditional sense. The concept of visual viewpoints (as mentioned in the SIFT
paper), while intuitive regarding scene-based images, becomes difficult to define for computer
screenshots. Furthermore, computer screenshots are usually not cluttered with objects in the
same way that photographs are. Codeword-based feature sets attempt to select distinctive local
feature points which can easily be matched. Since screenshots are likely to have regions of uni-
form pixels, codeword detectors would not be able to find distinctive local pixel groups within

these areas.

Color-based features are also useful in computer vision tasks. In 1991, Swain and Ballard intro-
duced the visual cue of an object’s color-histogram to assist a robot in identifying objects [13].
One problem with using a histogram of pixel values is that if an object is a slightly different
shade of a color it would have different pixel values. Increasingly, scene classification re-
searchers are developing algorithms that combine multiple feature sets (sometimes both high-

and low-level) features in order to improve their classification success [14].

Due to the concerns described above, and the novelty of the goal of detecting screenshots from
non screenshots (as opposed to the more generic goal of distinguishing between classes of
scenes), we chose to develop our own tailored feature sets. Our algorithm uses a number of
feature sets that it tests both individually and in combination. The computer vision fundamentals
required to understand these feature sets (which will be described in detail in Chapter 3) are

documented in the remainder of this chapter.

2.2 Feature Selection

An important step in any classification task like scene recognition is feature selection. Two
categories of features that seem promising in the classification of screenshots are linear-based
features and intensity-based features. A screenshot should have significantly more horizontal

and vertical lines than a typical photograph or non-computer-generated image. Also, it is likely

that a computer-generated image such as a screenshot will contain large sections of pixels with

identical intensities as well as a less “natural” pixel distribution overall.

2.2.1 Edge Detection

Two basic and related linear features present in digital images are edges and lines. An edge is de-
fined as a significant change in pixel intensity and can be detected using first - and second-order
derivatives of the gradients of pixel intensity [15, p. 541]. In 1963, Lawrence Roberts authored
a paper titled “Machine Perception of Three-Dimensional Solids” in which he proposed what
would become one of the first edge detection algorithms [16]. His algorithm applied two 2x2
masks as convolution filters to an image. One filter detected horizontal changes in intensity, and
the other vertical. Another method, presented by Sobel, involves 3x3 masks that calculate both
the magnitude and direction of the egdes [15]. A number of additional edge detectors have been
developed, including Prewitt, LoG, and Canny [15,17, 18].

2.2.2 Line Segment Detection

While edge detection algorithms operate on small, local regions of an image, in order to extract
more meaningful content we can apply an algorithm that performs line detection. Lines, as
defined in the 1986 paper “Extracting Straight Lines” are a “collection of local edges that are
contiguous in the image” [19]. Burns et al. go on to assign lines attributes such as length and
width. Two decades before Burns, Paul Hough developed a straightforward and successful
method for global pattern recognition which he patented and which can be applied to the task
of line detection [20]. Hough line detection begins with the collection of edge points from an
image and employs a method of voting on the parameter space of lines in order to determine
the lines that best fit the collection of edge points. This method requires some tuning to find
the optimal number of lines for a given image. After line detection, the Hough algorithm uses
the parameters of the lines as well as the end pixels in order to reduce the lines (which are of

infinite length) to line segments (which have finite length and specified endpoints) [20].

Burns and Hough’s definition of a line differs slightly from that of Haralick and Fischler who
describe a line as a region whose pixel intensities differ significantly on both sides of the re-
gion of interest (as opposed to just one side) [21,22]. Since the 1980s, researchers have made
an attempt to improve upon traditional line detection algorithms with respect to their speed,
accuracy, and false detection control [23, 24], but the Hough transform method has remained
a reliable and accurate technique. For our feature extracting process we used a probabilistic

Hough transform as implemented in the OpenCV library for Python [25].

2.2.3 Intensity-based Features

As mentioned earlier, two promising intensity-based features for screenshot detection are con-
tiguous sections of the same pixel color and the distribution of the entire image’s pixel colors.
One method of determining the first of these two features is run-length encoding. Run-length
encoding is a method of representing the length of stretches of the same color pixel in an image.
Long runs of the same pixel should be more likely to occur in a computer-generated image than

in a digital photograph.

While run-length encoding only addresses contiguous colors in one dimension, the algorithm
could be modified to measure two-dimensional patches of color as well. Fisher and D’ Amato
combined run-length encoding and the Hough transform for detecting document skew [26].
In the same vein as run-length encoding, it is likely that the histograms of screenshots and
of photographs would be noticeably different due to the lower entropy of colors displayed on
a typical user’s computer screen at a given time as compared the wide variety of colors in a
photograph. For the purposes of our algorithm, and due to the nature of our data sets (which
will be described in detail in Chapter 3), we converted all images to grayscale during image
pre-processing and employed intensity-based features as opposed to color-based features. Our
method implemented a histogram-based feature set for pixel intensities as opposed to run-length
encoding in order to better capture information about pixels with the same intensities that are
discontinuously located. Chapter 5, however, discusses the use of run-length encoding as future

work.

2.3 Machine Learning

An important part of an automated classification algorithm are the machine learning techniques
employed to perform the classification. Because the main focus of this research is on the feature
set selection, we elected to only consider some simpler (yet still effective) techniques for the

machine learning component of the classification algorithm.

2.3.1 Naive Bayes

Bayesian learning provides a probabilistic means of classifying an entity based on training from
previously-observed and categorized data points. The simplest form of Bayesian learning is the
naive Bayes classifier which significantly reduces the number of probabilities needed by assum-
ing that all features in the classifier are conditionally independent given the class [27]. While

this assumption is generally incorrect, for many application domains naive Bayes classifiers

have performed comparably to more complex machine learning techniques such as decision
trees and neural networks [28]. Bayesian classifiers are a routine method of image scene classi-
fication [7,29].

2.3.2 Support Vector Machines

Another machine learning technique is the support vector machine(SVM). Introduced by Vapnik
and Cortes in 1995, SVMs work by mapping data points into high-dimensional spaces in order
to find a hyperplane that can separate data points from different classes [30]. SVMs combine
multiple learning methods like linear learning machines and kernel-based feature transforma-
tions in order to be an effective and computationally efficient machine learning technique [31].
Researchers have used SVMs as a means of image classification, including histogram-based
classifications [32,33].

In order to best analyze the results of the feature selection we decided to choose one machine
learning algorithm to use consistently for the duration of the experimentation and testing. We
used a Bayesian classifier due to its simplicity and relative computational efficiency, but future

work could include testing feature sets across multiple machine learning algorithms.

The remaining chapters document the methodology involved in applying the aforementioned
techniques to perform image classification. The developed algorithm will employ linear and
intensity-based image attributes as features in machine learning mechanisms in order to detect

computer screenshots from a set of digital images.

THIS PAGE INTENTIONALLY LEFT BLANK

10

CHAPTER 3:

Experiment Design and Implementation

In this chapter, we discuss our application of the machine learning and feature extraction tech-
niques introduced in the previous chapter. We present our proposed methodology for screenshot

detection and the framework within which we conducted the testing of our algorithms.

3.1 Features

As stated earlier, the main focus of this thesis was to determine a combination of features
that were well-suited for the classification task at hand. We looked at two main categories
of feature sets: those representing the linear features of an image and those representing the
intensity-based features. For each of these categories we identified one set of features that is
more cumulative in nature and one that provides more detail. While the feature sets are first
presented individually, our experimentation examined all combinations of feature sets in order

to identify the combination of features that yielded that best performance of our algorithm.

3.1.1 Feature Set 1: Line Segment Percentages (LSP)

Our first set of features consisted of three features pertaining to line segments in an image.
To generate this feature set, we first applied a Hough transform, a standard computer vision
technique for line segment detection. The result of this transform was quantitative information
about the line segments found in the image from which we were able to extract the orientation
of each segment. We then counted the number of line segments that qualified as horizontal
and the number that qualified as vertical based on Equation (3.2) and were within a margin of
about 2°, or thresholdy,,. = 30. The three features were the percentage of line segments that
were vertical, the percentage of line segments that were horizontal, and the percentage of line

segments that were either horizontal or vertical.

11

Y2—J)1

slope = 3.1
X2 — X1
. . l
horizontal if |slope| < Thresholdyy,
orientation = < vertical if |slope| > thresholdy,pe (3.2)
neither otherwise
|segment Spori;| + |segmentsyey |
LSPeither = (3.3)
|segment s |
|S6gmentshori |
LSPygyi; = ————— (3.4
|segments ;|
|segment s ey |
LSPyey = —————— (3.5)
|segments |

Where segment sy, ,,i,, sSegments, q,1icq are the sets of line segments whose orientation is horizontal
or vertical, respectively, and segment s, is the set of line segments whose orientation is horizontal,

vertical, or neither.

3.1.2 Feature Set 2: Line Segments Binned by Length (LSB)

While the LSP feature set provided a good summary of the vertical and horizontal lines within
an image, it neglected to account for the lengths of the vertical and horizontal line segments.
In the LSB feature set we again obtained the extracted line segment information that we used
for the LSP feature set. We then looked at only those line segments that qualified as hori-
zontal or vertical (using the standard employed in the previous feature set and documented in
Equations (3.1)—(3.5)). However, instead of aggregating this information into percentage-based

features, we aggregated the information into a histogram binned by length of the line segment.

In order to account for images of differing size, we normalized the length of the line segment by
the size of the image in that direction (width for horizontal line segments and height for vertical
ones). This normalization provided us with the length of the line segment as a percentage of
the image size rather than in pixels. During experimentation, we also varied the number of bins

(and therefore bin size) in order to observe how bin size affected our classification success.

12

Figure 3.1: Intensity Entropies of Images by Class. While there is some overlap in the values
of the entropy between classes, they are clearly distributed differently. Entropy should be a
distinguishing feature and may prove useful especially in combination with other features.

3.1.3 Feature Set 3: Intensity Entropy (CE)

For this feature set (CE), we wished to capture information about the intensity distribution of
the image. First we used a single summarizing feature of the entropy of an image. In order
to maintain consistency across color images and grayscale images, we converted all images to
grayscale before calculating the intensity entropy of the pixel values. As evidence justifying the
use of entropy as a feature, we calculated the intensity entropies of all the images in our dataset

and plotted them in Figure 3.1.

3.1.4 Feature Set 4: Intensity-Based Histograms (CB)
Another promising set of features for distinguishing screenshots from non-screenshots are more
robust intensity-based features. A priori, we expect that images like photographs have a more

even distribution of pixel colors, while screenshots may have large spikes at various pixel val-

13

ues, since large portions of a computer screenshot may be the exact same color. It is possible
that these spikes occur at the same pixel value across multiple screenshots, for example, many
screenshots may have an usually large number of pure white pixels as compared to photographs.

Other spikes may be less easily pinpointed at specific pixel values.

If it were the case that the location of spikes (which correspond to the intensity value) were
consistent from screenshot to screenshot, an appropriate feature vector would likely be just
a histogram of pixel intensity values. However, because of the variability of the location of
spikes in the histogram, we chose to normalize the histogram of pixel values (which have been
placed into 256 bins, one per intensity value) and then bin the value of these bin heights in
order to generate a representation of the distribution of pixel intensities. After this second
binning, we hypothesized that photographs (non-screenshots) would have high counts in lower
bins indicating a fairly even distribution of pixel intensities. We also expected the screenshots to
have higher counts in the higher bins than photographs (due to pixel-value spikes in the original
grayscale value histogram). During our experimentation we varied the number of bins in the
second histogram (in a similar way as the LSB feature set). Figure 3.2 provides a sample image

from which we will step through the CB feature set calculations.

Figure 3.2: CB Feature Set Example. For simplicity’s sake, in this example we will map the
five distinct grayscale intensities to the values one through five.

14

Original Intensity Value Mapped Value Count Normalized Count

28 1 4 0.25

95 2 5 0.3125
192 3 3 0.1875
221 4 2 0.125
234 5 2 0.125

Table 3.1: CB Calculations

The algorithm first generates the counts of each intensity, and then normalizes them by dividing

by the total number of pixels in the image. Table 3.1 shows the results of these calculations.

0.5 4

Normalized Count (Percentage of Image)

1 2 3 4 5 1 23 45 6 7 8 910
Mapped Intensity Value Height of Intensity Value Bars
(a) Histogram of Intensity Values (b) Histogram of Normalized Count of Histogram
Values

Figure 3.3: Histograms Calculated for CB Feature Set

Figure 3.3(a) provides the percentage of pixels with each intensity value in the image. For real
images, there are be 256 values, one for each possible grayscale pixel value. This histogram
is useful for identifying specific values that occur more frequently, in this case, value “two.”
However, for our research it was more valuable to know that any value occured with a high

frequency, and less important to know which specific intensity value has the high frequency. To

15

achieve this, we built another histogram from the normalized count values. An example of this

second histogram is presented in 3.3(b).

Continuing with our example, we choose a bin size of ten. We know that our values in the first
histogram (Figure 3.3(a)) will not exceed 1.0 since they are percentages, so our ten bins each
have a width of 0.1.

In Figure 3.3(b), histogram two shows that three of the intensity values occured with a fre-
quency between 0.1 and 0.2, one value had a frequency between 0.2 and 0.3 and the final value
had a frequency between 0.3 and 0.4. The histogram, however, no longer distinguishes which

grayscale intensity values correspond to which frequencies.

3.2 Experimental Framework

Our experimental framework consisted of two datasets and a Python program with the function-
ality for both the feature extraction and machine learning algorithms. The python program had
the capability to train and test images or to run on pre-trained classifiers in order to just test a

set of images.

3.2.1 Datasets

For these experiments we needed a minimum of two datasets, one set of screenshots and one
of non-screenshots. There are a number of published image datasets that have been used for a
variety of computer vision experiments and papers. For our non-screenshot dataset, we wanted
a generic yet diverse set of photographs and decided upon Fei-Fei Li’s “13 Natural Scene Cat-
egories” dataset from her 2005 paper [7]. We were not able to find an established dataset of
screenshot images, so we chose to create our own dataset of screenshots from Wikimedia Com-
mon’s “Screenshots” category [34]. At the time of the corpus’s retrieval (February 2013), the
Screenshots category contained approximately 2,700 images that the users of Wikimedia had
tagged with the label “Screenshot.” After retrieving these images from Wikimedia, we then

filtered the images to fit a more specific definition of a screenshot.

For our purposes, we required that a screenshot be captured by the device itself (and not, for
example, a digital camera external to the system). The screenshot needed to have a definitive
element of a computer screen, such as a menu bar or desktop icon. For example, a screenshot
that only captured a region of a computer screen that was showing a photograph would be

visually indistinguishable from the photograph itself. After removing the images that did not

16

meet these specifications, we had a screenshot dataset containing approximately 2,400 images.

3.2.2 Experiments

In order to successfully perform these experiments, we used a number of Python libraries.
Python Imaging Library [35] and OpenCV [25] provided image processing and feature ex-
traction capabilities, NumPy [36] was used for general numeric processing and the Orange [37]

data mining library provided an implementation of a Bayesian classifier.

For all of our experiments, we ran a naive Bayes classifier from Orange (with the default param-
eters) on a combination of the previously mentioned feature sets. We exhaustively combined all
of the feature sets for a total of 15 experiments. Orange’s naive Bayes implementation uses the
LOESS locally-weighted regression [38] to estimate the conditional probability distribution.

In order to minimize our search space, we first ran isolated tests on the experiments for the LSB
and CB feature sets. These feature sets involve binning and require a parameter as input for the
number of bins used to create the feature vector. From these experiments, we selected the best
parameter values. These two parameters were then used for the remaining 11 combinatorial
experiments. The use of other machine learning algorithms as well as a structured experimen-
tal comparison to other scene classification algorithms are two topics for future work that are
discussed further in Chapter 5.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

CHAPTER 4

Analysis of Experiments

The experiments described in the previous chapter were evaluated according to accuracy, pre-
cision, recall, and F-score and the results are presented in this chapter. We conducted 15 ex-
periments by trying all combinations of our four different feature sets within the framework
of a naive Bayes classifier. Our classifier ran on two data sets of 2400 images each—one of
screenshots (the positive class for the machine learning algorithm) and one of non-screenshots
(the negative class). This chapter is structured to present detailed analysis and examples of the
first four experiments (testing each feature set individually), and then summary statistics on the
remaining combinatorial experiments, while bringing attention to experiments of note. Any
performance metrics presented here are a result of a ten-fold cross-validation run on all 4800

images.

4.1 Feature Set 1: LSP

Our first experiment used the first feature set consisting of only three features. These three
features were the percent of line segments that were horizontal, the percent of line segments

that were vertical, or the percent that were either horizontal or vertical.

Table 4.1 presents the confusion matrix for the experiment containing only the LSP feature set.

Predicted Screenshot Predicted Non-screenshot
Actual Screenshot 2263 153
Actual Non-screenshot 125 2291

Table 4.1: LSP Feature Set Confusion Matrix

Accuracy Precision Recall F-score
0.942 0.948 0.937 0.942

Table 4.2: LSP Results

Table 4.3 lists the average values of each of the three features for each class. While the horizon-
tal percent differs greatly between the classes (with a range of 0.571), the vertical percent has a

much closer margin (with a range of 0.042).

19

4.1.1 Example Images
In Figures 4.1-4.4 we present four sets of images from the LSP feature set experiment. The

images are shown with their corresponding line segment extractions.

ProductD Produc(Name Discontinued
Edt 1 Chal r
Edt 2 Clang r
Bt 3 Ariszed Smp r
Bt 4 Chef Amon's Capn Seacorg. T
Updae Carcel) hef Antor's Gurnbo M x W
Edi 5 Grardma's Boysetbenry Spread 10
Eit 7 Trcle Bobs Orgaric Dz Fears [7
Edt 3 Nortweods Cranberry Sance. [T
Bt J Wiski Kobe Mk F
Eit 1 Tra r

T Lyt

Figure 4.1: True Positives Using LSP Feature Set. This set of images is of true positives (images
that the Bayesian classifier determined were screenshots and were indeed screenshots). It is
evident from the accompanying line detection images that horizontal and vertical line segments
are prominent in the images.

20

Figure 4.2: True Negatives Using LSP Feature Set. This set of images is of true negatives
(correctly classified as non-screenshots). While these images may have some (or even many)
line segments that are horizontal or vertical, they have a high number of line segments that are
not horizontal or vertical, which significantly affects the percentage calculation and provides
for an accurate classification as non-screenshots.

21

Figure 4.3: False Positives Using LSP Feature Set. This set is of images that were classified
as screenshots but were actually non-screenshots. These images tended to fall in two main
categories. The first category is images that have very few detected line segments, so even just
a few horizontal or vertical line segments would cause a noticeable impact in the percentage
(since the denominator in the percentage calculation is so low). The second category is of non-
screenshots that actually happen to have a proportionally large number of lines that fall within
our threshold for qualifying a line segment as horizontal or vertical.

22

Figure 4.4: False Negatives Using LSP Feature Set. This set of images is of screenshots that
were misclassified (the algorithm labeled them as non-screenshots instead). Even though it is
clear to the human observer that they are indeed screenshots, these examples have a number of
line segments that would not be counted as horizontal or vertical and the quantity of these line
segments is enough to outweigh the horizontal and vertical line segments are do exist in the
images.

23

ProdueD Productlame Discontinued
Eit 1 Chd r
Eit 1 Chag r
Rt 3 Aaerd Sy r
Rt 4 Chebdrton' Copn Sesonng. [
Updte Caeel 5 o At Gumbo i F
I 6 Crancna's Boeenbery Spred T
B 7 Uncle Bot's Crgane Dred Peas [
B B Worthwoods Crubeny Saee [
Eit 9 MshiRobeln F
Eit JU r
(a) True Positive (b) True Negative

Figure 4.5: LSP Example Images. This figure contains one image from each of the four confu-
sion matrix categories enumerated (true positive, true negative, false positive, and false negative)
and their corresponding line segment extractions while Table 4.3 contains the feature values of
each of the four images and the average features values from the 2400 tested screenshots and

the 2400 tested non-screenshots.

(c) False Positive

(d) False Negative

Horizontal Percent Vertical Percent

Horizontal or Vertical Percent

Average Screenshot 0.750
Average Photo 0.179
True Positive 4.5(a) 0.777
True Negative 4.5(b) 0.156
False Positive 4.5(c) 0.615
False Negative 4.5(d) 0.193

0.109
0.067
0.165
0.044
0.000
0.013

0.859
0.246
0.942
0.200
0.615
0.206

Table 4.3: LSP Example Image Feature Values

24

4.2 Feature Set 2: LSB

Our second experiment provided a greater level of detail to the previous classifier’s use of line
segment information as features. Instead of treating all line segments equally (independent of
length of the line segment), the second feature set consists of counts of horizontal or vertical

lines binned by length (and proportional to the size of the image).

In this experiment, we tested a number of different bin sizes. Instead of providing confusion
matrices for each of the different bin sizes, we include the following summary statistics as

calculated from the confusion matrices.

Number of Bins Accuracy Precision Recall F-score

10 0.882 0.977 0.782 0.869
50 0.869 0.989 0.746 0.850
100 0.873 0.993 0.751 0.855
500 0.887 1.000 0.774 0.872
1000 0.891 0.999 0.783 0.878

Table 4.4: LSB Results as a Function of Line Length Bins

Within the scope of the LSB feature set, varying the number of line segment length bins tended
to have a varying effect on the results (as shown in Table 4.4). Most consistent is the fairly-
steady improvement of the algorithm’s precision (due to the reduction of false positives) as the
number of bins increases. When comparing the LSB experiment to the LSP experiment, the
LSB experiment provides a higher precision and lower accuracy independent of the number
of bins used. The following two sets of images demonstrate the improvements that binning
provides. For these examples, we decided to use the results from the LSB feature set with 1000
bins because it outperformed (albeit negligibly) the other LSB bin sizes with respect to f-score.
Figure 4.6 contains eight non-screenshot images that were incorrectly classified as screenshots
when solely using the LSP feature set, but are correctly classified using only the LSB feature
set. Figure 4.7 presents a set of eight screenshots that were misclassified by LSP, but correctly
classified by LSB.

25

4.2.1 Example Images

Figure 4.6: True Negatives Using LSB Feature Set with 1000 Bins. The LSP features were
frequently unsuccessful in correctly classifying non-screenshots that contained a small number
of line segments if a few of those segments were horizontal or vertical (as is often the case in
images of horizons). Because all three features were percentage-based, the small number of
total line segments allowed a few horizontal or vertical segments to significantly influence the
feature values. The binned features improved upon this by employing features based on counts
as opposed to percentages.

26

Figure 4.7: True Positives Using LSB Feature Set with 1000 Bins. Although the number of
true positives decreased between the LSB feature set and the LSP feature set, there were some
screenshots for which the LSB feature set was better suited. Line segment binning seemed to be
effective in correctly classifying screenshots that have significant clutter (in their collection of
line segments) but that also contain noticeable linear features of relatively large length, usually
from screen elements like menu bars.

27

Figure 4.8: LSB Feature Values (Ten Bins) for Correctly Classified Images. The second row is
the horizontal line segments, while the third row is the vertical line segments.

28

4.3 Feature Set 3: CE

The third experiment used intensity-based featured instead of linear-based features. Similar to
the LSP and LSB feature sets, we started with a simpler set of features, or in this case one

feature—intensity entropy.

Predicted Screenshot Predicted Non-screenshot
Actual Screenshot 2044 356
Actual Non-screenshot 98 2302

Table 4.5: Experiment 3 Confusion Matrix

Table 4.5 presents the confusion matrix for the experiment utilizing only the feature of entropy.
Additionally, summary statistics (as calculated from the confusion matrix) are listed in Table
4.6.

Accuracy Precision Recall F-score
0.905 0.954 0.852 0.900

Table 4.6: CE Results

4.3.1 Example Images

Figures 4.9—4.12 contain a random sampling of true positives, true negatives, false positives,
and false negatives from this experiment. Due to the use of entropy as a singular feature in
this experiment, the results are as expected. Images with a more even distribution of differ-
ent grayscale pixel values have a higher entropy and are more likely to be a non-screenshot.
Computer-generated images, on the other hand, tend to have lower entropy values due to un-
even distributions of pixel values, and large concentrations of the same pixel value within an

image.

29

Figure 4.9: True positives Using CE Feature Set

Figure 4.10: True Negatives Using CE Feature Set

30

Figure 4.11: False Positives Using CE Feature Set

Figure 4.12: False Negatives Using CE Feature Set

A sample image from each category is shown in Figure 4.13 and their respective entropy values

31

in Table 4.7. While the entropies of the correctly classified images (true positive and true
negative) fall close to their categorical averages or even on the outside of the average (away
from the other class mean), the entropies of the misclassified images are closer to each other

and both between the two class means.

(a) True Positive: 2.356 (b) True Negative: 7.283 (c) False Positive: 6.077 (d) False Negative: 6.634

Figure 4.13: CE Example Images and Entropy Values

Entropy

Average Screenshot 4.878
Average Non-screenshot ~ 7.336
True Positive 4.13(a) 2.356
True Negative 4.13(b) 7.283
False Positive 4.13(c) 6.077
False Negative 4.13(d) 6.634

Table 4.7: LSP Example Image Feature Values

4.4 Feature Set4: CB

Similar to the evolution of linear-based features, we explored whether a more detailed represen-
tation of an image’s pixel-intensity distribution would increase the success of the classification
algorithm (as compared to the CE feature set). The details of the implementation of this feature
set are described in detail in the previous chapter. The CB feature set also requires a parameter
for the number of bins in which to place the color histogram bin heights. We tested a variety of
bin sizes between ten and 5,000. Unlike the LSB feature set, bin size played a significant role

in the success of the algorithm (as shown in Table 4.8). As bin size increased, the values for

32

accuracy, precision, recall, and F-score almost always increased.

Number of Bins Accuracy Precision Recall F-score
10 0.773 0.947 0.578 0.717
50 0.802 0.847 0.736 0.788
100 0.816 0.863 0.751 0.803
500 0.945 0.979 0.910 0.943
1000 0.945 0.981 0910 0.944

Table 4.8: Results as a Function of Color Bins

4.4.1 Example Images

Figure 4.14 demonstrates this feature set’s progressive increase in success as the number of bins
increases. The first column of the figure contains two screenshots and two non-screenshots that
were incorrectly classified when the number of bins was ten, but became correctly classified
when the number of bins was increased to 50. The second column shows four images that made

this transition when the number of bins was increased again from 50 to 100; the rest of the

columns follow the same pattern.

33

(a) Bins=50 (b) Bins=100 (c) Bins=500 (d) Bins=1000

Figure 4.14: Correctly Classified Images as Bin Size Increase. Following the progress from
left to right in this figure, the images increase in classification “difficulty.” That is, the colors
in the screenshots become more varied and the colors in the non-screenshots become more
monotonous. As bin size increased, the performance of the algorithm also increased.

34

4.5 Feature Set Combinations

After running the experiments on each of the individual feature sets, we ran the experiment

on all possible combinations of the four feature sets. In cases where the feature set required a
parameter for the number of bins (LSB and CB), five bin sizes were tested (10, 50, 100, 500
and 1000). The accuracy, precision, recall and F-score of the eleven additional experiments

are listed in Table 4.9, for the full results, please see the appendix. For experiments with bin

number parameters, only the best bin size combination is presented in this chart (as measured

by highest F-score).

Set1 Set2 Set3 Set4 LineBins Color Bins Accuracy Precision Recall F-score
- - Yes Yes - 50 0.942 0.950 0.933 0.941
- Yes - Yes 10 500 0.968 0.993 0.942 0.967
- Yes Yes - 10 - 0.937 0.994 0.880 0.933
- Yes Yes Yes 10 500 0.966 0.991 0.941 0.965

Yes - - Yes - 500 0.963 0.989 0.937 0.962
Yes - Yes - - - 0.954 0.963 0.945 0.954
Yes - Yes Yes - 10 0.967 0.981 0.953 0.967
Yes Yes - - 10 - 0.956 0.973 0.937 0.955
Yes Yes - Yes 50 500 0.975 0.997 0952 0974
Yes Yes Yes - 10 - 0.973 0.987 0957 0.972
Yes Yes Yes Yes 10 10 0.980 0.997 0.963 0.980

Table 4.9: Best Results by Feature Set Combination

In Table 4.9 we can see that the majority of experiments using the LSB feature set showed best

results when the number of bins was set to the lowest value, ten. Also, for the most part, the

inclusion of additional feature sets noticeably increased the success of the algorithm.

35

T T T T T T
1+ v—’if |
0.9 | 1+ N
=
= .S
S 085 | g
~ g 099 .
i —e— 10 LSB Bins | | A —e— 10 LSB Bins
0.8 = 50 LSB Bins = 50 LSB Bins
—e— 100 LSB Bins 0.99 |- —eo— 100 LSB Bins ||
0.75 —+— 500 LSB Bins || —~— 500 LSB Bins
—— 1000 LSB Bins —— 1000 LSB Bins
07 | | | 1 1 1 098 | | | 1 1 1
0 200 400 600 800 1,000 0 200 400 600 800 1,000
CB Bins CB Bins

Figure 4.15: Results Using All Four Feature Sets. Each line represents a specific value of the
LSB bins parameter (as noted in the key) and moving across the line from left to right indicates
and increase the CB bins parameter.

Figure 4.15 presents two graphs for the experiment that contains all four feature sets. These
graphs present accuracy and precision as a function of the number of line bins and color bins
from the LSB and CB feature sets. We only present graphs for recall and precision, as opposed
to all four major summary statistics, because the graphs for accuracy and F-score mirror the
trends in the recall graph, only with slightly scaled values. As a note, the y-axis scales for
the graphs are different because the values for precision tended to be significantly higher than
those of the other metrics. Precision values all fell between 0.990 and 1.000 regardless of the
values chosen for LSB bins and CB bins. The trade-off between recall and precision can be
manipulated using the prior probability of a class within the Bayesian classifier calculations.
For our experiments, the prior probability was determined by the number of images of each
class in our training set, which was evenly split between screenshots and non-screenshots. The
recall-precision trade-off is then a function of the classifier’s ability to more easily discern one
class than the other. Figure 4.16 shows the receiver operating characteristic (ROC) curve for the
classifier learned from the LSP feature set. The diagonal line in the plot shows the curve of a
classifier that guesses at random while an ideal curve puts all the points in the upper left corner.
The ROC curve for the classifier learned using all four feature sets is virtually identical to the

ideal curve (hence why it isn’t shown).

36

Figure 4.16: ROC Curve for LSP Feature Set. As an example of the trade-offs between false
positives and false negatives, we present a ROC curve for one of our experiments (using the
LSP feature set). Each line on this graph represents the ROC curve results for a single iteration
of the ten-fold cross-validation.

4.6 Computational Performance

The purpose of this thesis was not to measure the speed of the algorithm, but we provide rough
estimations of the time performance of the algorithm. The algorithm was tested on an Ubuntu
32-bit Virtual Machine with 1GB RAM which was running within VMware Player on Windows
7 with 8GB RAM and an Intel Core 17-2600 processor. The algorithm that combined all four
feature sets (with bin size parameter values of ten for both the LSB and CB feature sets) was able
to calculate the features for 4800 images, and train and test the classifier in about 14 minutes.

This averages to about 0.18 seconds per image including training and testing.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

CHAPTER b5:

Conclusions and Future Work

In the previous chapters, we presented our motivation, experimental design and results regarding
an evaluation of feature sets for a computer screenshot detection algorithm. As with most
research projects and especially those that address tangible and evolving real-world problems,
there is always room for improvement, expansion, and future work. There are a number of areas

ripe with additional work, and we will address three that particularly stand out.

5.1 Feature Set Improvements

The first area for future work is the continued refinement of the feature sets for screenshot
detection. We selected four feature sets, varied their parameters, and tested combinations of
feature sets. While there is more work to be done in fine-tuning the four feature sets from this
paper, there are a number of potential features that we did not address. We focused on low-
level (pixel-based) features. Two additional low-level features are one- and two-dimensional
run-length encodings of pixel values in order to quantify the groupings of identically-colored
pixels. At a more abstract level, features such as logo detection (for example, being able to
identify the Windows start button) and optical character recognition (determining if the image

has text content) could provide indications as to the class of image.

At an even higher level, there is often distinguishing metadata associated with digital images.
Mac’s OS X operating system automatically gives standard filenames to screenshots taken
through the standard screen capture keystroke sequence, whereas some photographs taken with
digital cameras store metadata about everything from the camera make and model to the ISO
speed and focal length. The aspect ratio of an image can also give an indication of the origin
of that image. While this information can certainly be forged or tampered with, it could still

provide improved classification success.

5.2 Efficiency-Effectiveness Trade-Off

When developing a machine learning classification algorithm, more features often provide bet-
ter classification success, but it can be difficult to accurately measure the time and computational
costs associated with each additional feature or feature set. It would be useful future work to

complete a study comparing the inverse relationship between efficiency and effectiveness as it

39

pertains to the number of features used in a screenshot classification algorithm and the speed
with which the algorithm can perform. This type of study would be particularly relevant for at
least two reasons: tools that assist in forensic triage require optimized speed and performance,
and that the specific problem of distinguishing screenshots from non-screenshots may be bet-
ter suited for a streamlined feature set than the task of a more general image categorization

algorithm.

5.3 Requirements Analysis

Finally, a key area for future work is the process of understanding what an actual user would
require for this system to be useful. Information about its intended use would also assist in
parameter tuning and help to optimize the algorithm for its target audience. As with any clas-
sification algorithm, there is a trade-off between precision and recall that can be adjusted by
changing any number of parameters. By performing requirements analysis with a potential fu-
ture user of this algorithm (for example a forensic examiner), it would be possible to develop
a use case and determine what number of errors the user can tolerate and more importantly,
whether they prefer false positives or false negatives. A tool implementing this algorithm could

also provide the end user the ability to perform real-time tuning to alter this trade-off.

5.4 Performance Example

If a forensic examiner was presented with a 1 terabyte drive completely filled with images,
that drive would be able to hold about 525,000 images if each image was 2 megabytes in size.
Assuming we achieve the same accuracy results as our best-performing experiment (.98), that
means that just over 10,000 of the images on the drive would be wrongly classified. It is here
that the precision-recall trade-off described earlier has an effect. If an examiner needs to find
as many screenshots as possible and is able to tolerate sifting through more non-screenshots
to do that, then the algorithm can be tuned to retrieve more images total, thereby increasing
the number of false positives and decreasing precision. On the other hand, if an examiner has
very little time to examine the drive and does not have the workload capacity to sift through
unnecessary non-screenshots in order to find screenshots, fewer images can be returned to the
examiner as potential screenshots. This alternative would increase the number of false negatives

(screenshots that were incorrectly classified as non-screenshots) as well as decreasing recall.

40

5.5 Conclusion

In our research, we successfully designed, built, and tested features for screenshot detection. We
developed four feature sets that captured the linear and intensity-based characteristics, which
we originially hypothesized would be applicable in distinguishing a screenshot from a non-
screenshot. We tested various combinations of all feature sets and parameter values and were
able to measure aspects of their success through the metrics of accuracy, precision, recall, and
F-score obtained from the ten-fold cross-validation. Some of our more minimal features sets
had F-scores between 0.96 and 0.98 and our most promising feature set combination returned
results with an F-score of 0.98. After determining the best combination of our feature sets, we
are able to recommended a successful screenshot detection algorithm that provides a valuable,

and otherwise unavailable triage tool to today’s forensic examiners.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

List of References

[1] rlittle. (2012, Apr.) Ff 12.0 saves images of each webpage 1 visit to my cache folders. is
this a feature or malware? [Online]. Available:
https://support.mozilla.org/en-US/questions/926354

[2] B. Reid. (2012, Mar.) New mac os x malware discovered, takes screenshots and uploads
them to unknown servers without user’s consent. [Online]. Available:
http://www.redmondpie.com/new-mac-os-x-malware-discovered-takes-screenshots-and-
uploads-them-to-unknown-servers-without-user-consent/

[3] H. Moravec, Mind Children: The Future of Robot and Human Intelligence. Cambridge,
MA: Harvard University Press, 1988 1988.

[4] Tbm100 - deep blue. [Online]. Available:
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/

[5] R. Szeliski, Computer Vision: Algorithms and Applications (Texts in Computer Science),
Isted. Springer, Nov. 2010. [Online]. Available:
http://www.worldcat.org/isbn/1848829345

[6] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-scale
scene recognition from abbey to zoo,” in CVPR, 2010, pp. 3485-3492.

[7] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for learning natural scene
categories,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2, June 2005, pp. 524 — 531 vol. 2.

[8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput.
Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[9] C. Schmid, “Beyond bags of features: Spatial pyramid matching for recognizing natural
scene categories,” in In CVPR, 2006, pp. 2169-2178.

[10] S. N. Parizi, J. G. Oberlin, and P. F. Felzenszwalb, ‘“Reconfigurable models for scene
recognition,” in CVPR, 2012, pp. 2775-2782.

[11] A.Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of
the spatial envelope,” International Journal of Computer Vision, vol. 42, pp. 145-175,
2001.

[12] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),”
Computer Vision Image Understanding, vol. 110, no. 3, pp. 346-359, Jun. 2008.
[Online]. Available: http://dx.doi.org/10.1016/j.cviu.2007.09.014

43

[13] M. J. Swain and D. H. Ballard, “Color indexing,” International Journal of Computer
Vision, vol. 7, pp. 11-32, 1991.

[14] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in CVPR, 2009, pp. 413-420.

[15] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using
MATLAB, 2nd ed., 2nd ed. Gatesmark Publishing. [Online]. Available:
http://www.worldcat.org/isbn/0982085400

[16] L. G. Roberts, “Machine perception of three-dimensional solids,” DTIC Document, Tech.
Rep., 1963.

[17] J. Canny, “A computational approach to edge detection,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. PAMI-8, no. 6, pp. 679 —698, nov. 1986.

[18] J. Prewitt, Object enhancement and extraction. Academic Press, New York, 1970,
vol. 75.

[19] J. B. Burns, A. R. Hanson, and E. M. Riseman, “Extracting straight lines,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 4, pp. 425-455,
1986.

[20] P. Hough, “Method and means for recognizing complex patterns,” December 1962, US
Patent 3,069,654.

[21] R. M. Haralick, “Ridges and valleys on digital images,” Computer Vision, Graphics, and
Image Processing, vol. 22, no. 1, pp. 28-38, 1983.

[22] M. A. Fischler, “Linear delineation,” DTIC Document, Tech. Rep., 1982.

[23] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “LSD: a Line
Segment Detector,” Image Processing On Line, 2012.

[24] A. Halder, N. Chatterjee, A. Kar, S. Pal, and S. Pramanik, “Edge detection: A statistical
approach,” in Electronics Computer Technology (ICECT), 2011 3rd International
Conference on, vol. 2, April 2011, pp. 306 -309.

[25] OpenCV. (2013, Apr.) Opencv). [Online]. Available: http://opencv.org/

[26] S. Hinds, J. Fisher, and D. D’ Amato, “A document skew detection method using
run-length encoding and the hough transform,” in Pattern Recognition, 1990.
Proceedings., 10th International Conference on, vol. 1, June 1990, pp. 464 —468 vol.1.

[27] T. M. Mitchell, Machine Learning, 1sted. New York, NY, USA: McGraw-Hill, Inc.,
1997.

[28] D. Michie, D. J. Spiegelhalter, C. C. Taylor, and J. Campbell, “Machine learning, neural
and statistical classification,” 1994.

44

[29] S. Aksoy, K. Koperski, C. Tusk, G. Marchisio, and J. Tilton, “Learning bayesian
classifiers for scene classification with a visual grammar,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 43, no. 3, pp. 581 — 589, March 2005.

[30] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp.
273-297, Sep. 1995. [Online]. Available: http://dx.doi.org/10.1023/A:1022627411411

[31] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines: and
other kernel-based learning methods. New York, NY, USA: Cambridge University
Press, 2000.

[32] O. Chapelle, P. Haffner, and V. Vapnik, “Support vector machines for histogram-based
image classification,” Neural Networks, IEEE Transactions on, vol. 10, no. 5, pp. 1055
—1064, September 1999.

[33] J. Hao and X. Jie, “Improved bags-of-words algorithm for scene recognition,” in Signal
Processing Systems (ICSPS), 2010 2nd International Conference on, vol. 2, July 2010,
pp. V2-279 —V2-282.

[34] (2013, Apr.) Category:screenshots - wikimedia commons. [Online]. Available:
http://commons.wikimedia.org/wiki/Category:Screenshots

[35] pythonware. (2013, Apr.) Python imaging library (pil). [Online]. Available:
http://www.pythonware.com/products/pil/

[36] NumPy. (2013, Apr.) Scientific computer tools for python - numpy). [Online]. Available:
http://www.numpy.org/

[37] T. Curk, J. Demsar, Q. Xu, G. Leban, U. Petrovic, 1. Bratko, G. Shaulsky, and B. Zupan,
“Microarray data mining with visual programming,” Bioinformatics, vol. 21, pp.
396-398, Feb. 2005. [Online]. Available:
http://bioinformatics.oxfordjournals.org/content/21/3/396.full.pdf

[38] W.S. Cleveland and S. J. Devlin, “Locally-Weighted Regression: An Approach to
Regression Analysis by Local Fitting,” Journal of the American Statistical Association,
vol. 83, pp. 596610, 1988.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Appendix: Detailed Results

In order to avoid verbosity when describing each of the experiments, we created a succinct
four-part naming schema that represents the distinguishing parameters of each experiment.

e [<number of images>images] from each class of image
e [<four-digit binary string>] representing feature set inclusion
— [0/1] feature set one: LSP
— [0/1] feature set two: LB
— [0/1] feature set two: CE
— [0/1] feature set two: CB
e [<number of line bins>1bins] if feature set two is included
e [<number of color bins>cbins] if feature set four is included

These four items are concatenated together separated by underscores. As an example, the
experiment that is tested on 2400 images of each class and includes feature sets one, three, and
four (and has 500 color bins for features set four) would result in the experiment string
2400images_1011_500cbins.

Results From All Experiments

Experiment Accuracy Precision Recall F-score
2400images_0001_1000cbins 0.944 0.978 0.908 0.942
2400images_0001_100cbins 0.814 0.862 0.749 0.801
2400images_0001_10cbins 0.772 0.946 0.577 0.717
2400images_0001_500cbins 0.944 0.978 0.909 0.942
2400images_0001_50cbins 0.794 0.846 0.72 0.778
2400images_0010 0.905 0.954 0.851 0.900
2400images_0011_1000cbins 0.938 0.978 0.896 0935
2400images_0011_100cbins 0.930 0.963 0.894 0.927
2400images_0011_10cbins 0.942 0.977 0.906 0.940
2400images_0011_500cbins 0.936 0.976 0.893 0.933
2400images_0011_50cbins 0.942 0.950 0.933 0.941
2400images_0100_10001bins 0.891 0.999 0.783 0.878
2400images_0100_1001bins 0.873 0.993 0.751 0.855
2400images_0100_10lbins 0.882 0.977 0.782 0.869
2400images_0100_5001bins 0.887 1.0 0.774 0.872
2400images_0100_501bins 0.869 0.989 0.746 0.850
2400images_0101_10001bins_1000cbins 0.923 1.0 0.846 0916
2400images_0101_10001bins_100cbins 0.894 0.999 0.788 0.881
2400images_0101_10001bins_10cbins 0.898 0.999 0.797 0.887
2400images_0101_10001bins_500cbins 0.915 1.0 0.830 0.907

Continued on next page

47

Table 1 — Continued from previous page

Experiment Accuracy Precision Recall F-score
2400images_0101_10001bins_50cbins 0.893 0.999 0.786 0.880
2400images_0101_100Ibins_1000cbins 0.962 0.998 0.926 0.960
2400images_0101_100Ibins_100cbins 0.880 0.995 0.765 0.865
2400images_0101_100Ibins_10cbins 0.895 0.997 0.792 0.883
2400images_0101_100Ibins_500cbins 0.951 0.999 0.903 0.949
2400images_0101_1001lbins_50cbins 0.880 0.996 0.763 0.864
2400images_0101_10lbins_1000cbins 0.967 0.993 0.941 0.966
2400images_0101_10lbins_100cbins 0.903 0.982 0.821 0.894
2400images_0101_10lbins_10cbins 0.926 0.995 0.855 0.920
2400images_0101_10lbins_500cbins 0.968 0.993 0.942 0.967
2400images_0101_10lbins_50cbins 0.903 0.986 0.818 0.895
2400images_0101_500Ibins_1000cbins 0.928 1.0 0.856 0.922
2400images_0101_5001Ibins_100cbins 0.888 1.0 0.777 0.875
2400images_0101_500Ibins_10cbins 0.893 1.0 0.787 0.881
2400images_0101_500Ibins_500cbins 0.916 1.0 0.832 0.908
2400images_0101_5001Ibins_50cbins 0.889 1.0 0.778 0.875
2400images_0101_501bins_1000cbins 0.965 0.996 0.934 0.964
2400images_0101_501Ibins_100cbins 0.883 0.993 0.773 0.869
2400images_0101_501bins_10cbins 0.901 0.995 0.805 0.890
2400images_0101_501bins_500cbins 0.963 0.997 0.928 0.961
2400images_0101_501bins_50cbins 0.881 0.994 0.767 0.865
2400images_0110_10001bins 0.897 0.999 0.795 0.886
2400images_0110_100Ibins 0.895 0.996 0.793 0.883
2400images_0110_10lbins 0.937 0.994 0.88 0.933
2400images_0110_5001bins 0.891 1.0 0.782 0.877
2400images_0110_501bins 0.901 0.994 0.806 0.890
2400images_0111_10001bins_1000cbins 0.928 1.0 0.856 0.922

2400images_0111_10001bins_100cbins 0.899 0.999 0.799 0.888
2400images_0111_10001bins_10cbins 0.904 0.999 0.808 0.894

2400images_0111_10001bins_500cbins 0.920 1.0 0.840 0913
2400images_0111_10001bins_50cbins 0.898 0.999 0.798 0.887
2400images_0111_100Ibins_1000cbins 0.963 0.997 0.928 0.961
2400images_0111_100Ibins_100cbins 0.903 0.997 0.809 0.893
2400images_0111_1001Ibins_10cbins 0.915 0.998 0.831 0.907
2400images_0111_1001bins_500cbins 0.96 0.999 0.920 0.958
2400images_0111_100Ibins_50cbins 0.901 0.997 0.805 0.891
2400images_0111_101lbins_1000cbins 0.964 0.992 0.935 0.963
2400images_0111_10lbins_100cbins 0.951 0.992 0.909 0.949
2400images_0111_10Ibins_10cbins 0.960 0.998 0.922 0.958

Continued on next page

48

Table 1 — Continued from previous page

Experiment Accuracy Precision Recall F-score
2400images_0111_10lbins_500cbins 0.966 0.991 0.941 0.965
2400images_0111_10lbins_50cbins 0.951 0.990 0911 0.949
2400images_0111_500Ibins_1000cbins 0.938 1.0 0.877 0.934
2400images_0111_500Ibins_100cbins 0.894 1.0 0.789 0.882
2400images_0111_5001Ibins_10cbins 0.898 1.0 0.797 0.887
2400images_0111_500Ibins_500cbins 0.923 1.0 0.847 0917
2400images_0111_500Ibins_50cbins 0.895 1.0 0.790 0.882
2400images_0111_501bins_1000cbins 0.965 0.996 0.934 0.964
2400images_0111_501bins_100cbins 0.913 0.996 0.83 0.905
2400images_0111_501bins_10cbins 0.929 0.997 0.861 0.924
2400images_0111_501bins_500cbins 0.965 0.997 0.932 0.963
2400images_0111_501bins_50cbins 0.915 0.997 0.832 0.907
2400images_1000 0.942 0.946 0937 0.941
2400images_1001_1000cbins 0.960 0.989 0931 0.959
2400images_1001_100cbins 0.956 0.974 0.937 0.955
2400images_1001_10cbins 0.962 0.974 0.948 0.961
2400images_1001_500cbins 0.963 0.989 0.937 0.962
2400images_1001_50cbins 0.951 0.958 0944 0951
2400images_1010 0.954 0.963 0945 0954
2400images_1011_1000cbins 0.956 0.989 0.923 0.955
2400images_1011_100cbins 0.965 0.983 0.947 0.965
2400images_1011_10cbins 0.967 0.981 0.953 0.967
2400images_1011_500cbins 0.96 0.987 0932 0.958
2400images_1011_50cbins 0.963 0.968 0.958 0.963
2400images_1100_10001bins 0.901 0.999 0.804 0.891
2400images_1100_1001bins 0.915 0.994 0.835 0.908
2400images_1100_10lbins 0.956 0.973 0.937 0.955
2400images_1100_5001bins 0.901 1.0 0.802 0.890
2400images_1100_501bins 0.927 0.992 0.861 0.922
2400images_1101_10001bins_1000cbins 0.935 1.0 0.870 0.930
2400images_1101_10001bins_100cbins 0.905 0.999 0.811 0.895
2400images_1101_10001bins_10cbins 0.909 0.999 0.819 0.900
2400images_1101_10001bins_500cbins 0.927 1.0 0.854 0921
2400images_1101_10001bins_50cbins 0.904 0.999 0.809 0.894
2400images_1101_100Ibins_1000cbins 0.974 0.999 0.95 0.973
2400images_1101_100Ibins_100cbins 0.921 0.996 0.845 0914
2400images_1101_100Ibins_10cbins 0.933 0.997 0.869 0928
2400images_1101_100Ibins_500cbins 0.969 0.999 0.939 0.968
2400images_1101_100Ibins_50cbins 0.921 0.997 0.845 0914

Continued on next page

49

Table 1 — Continued from previous page

Experiment Accuracy Precision Recall F-score

2400images_1101_10lbins_1000cbins 0.974 0.995 0952 0.973
2400images_1101_10Ibins_100cbins 0.964 0.989 0.939 0.963

2400images_1101_10lbins_10cbins 0.971 0.995 0.947 0970
2400images_1101_10lbins_500cbins 0.975 0.993 0956 0974
2400images_1101_10lbins_50cbins 0.963 0.986 0.939 0.962
2400images_1101_500Ibins_1000cbins 0.947 1.0 0.894 0.944
2400images_1101_5001Ibins_100cbins 0.903 1.0 0.806 0.892
2400images_1101_500Ibins_10cbins 0.907 1.0 0.815 0.898
2400images_1101_500Ibins_500cbins 0.930 1.0 0.860 0.924
2400images_1101_5001Ibins_50cbins 0.902 1.0 0.805 0.892
2400images_1101_501bins_1000cbins 0.975 0.996 0953 0974
2400images_1101_501bins_100cbins 0.936 0.993 0.877 0.932
2400images_1101_501bins_10cbins 0.951 0.996 0.905 0.948
2400images_1101_501bins_500cbins 0.975 0.997 0.952 0.974
2400images_1101_501bins_50cbins 0.936 0.996 0.876 0.932
2400images_1110_10001bins 0.908 0.999 0.817 0.899
2400images_1110_100lbins 0.930 0.997 0.862 0925
2400images_1110_10lbins 0.973 0.987 0957 0972
2400images_1110_5001bins 0.907 1.0 0.815 0.898
2400images_1110_501bins 0.952 0.995 0.907 0949
2400images_1111_10001bins_1000cbins 0.941 1.0 0.882 0.937
2400images_1111_10001bins_100cbins 0.910 0.999 0.822 0.902
2400images_1111_10001bins_10cbins 0.916 1.0 0.832 0.908
2400images_1111_10001bins_500cbins 0.930 1.0 0.860 0.925
2400images_1111_10001bins_50cbins 0911 0.999 0.823 0.902
2400images_1111_100Ibins_1000cbins 0.973 0.998 0.948 0972
2400images_1111_100Ibins_100cbins 0.936 0.998 0.875 0.932
2400images_1111_100Ibins_10cbins 0.948 0.998 0.897 0945
2400images_1111_100Ibins_500cbins 0.972 0.999 0946 0971
2400images_1111_100Ibins_50cbins 0.937 0.998 0.877 0933
2400images_1111_101lbins_1000cbins 0.972 0.994 0.950 0972
2400images_1111_10lbins_100cbins 0.976 0.993 0.959 0.976
2400images_1111_10lbins_10cbins 0.980 0.997 0.963 0.980
2400images_1111_10lbins_500cbins 0.973 0.993 0954 0973
2400images_1111_10lbins_50cbins 0.976 0.991 0961 0.976
2400images_1111_500Ibins_1000cbins 0.951 1.0 0.902 0948
2400images_1111_500Ibins_100cbins 0911 1.0 0.822 0.902
2400images_1111_5001Ibins_10cbins 0.917 1.0 0.835 0.910
2400images_1111_500Ibins_500cbins 0.936 1.0 0.873 0.932

Continued on next page

50

Table 1 — Continued from previous page

Experiment Accuracy Precision Recall F-score
2400images_1111_500Ibins_50cbins 0.910 1.0 0.821 0.902
2400images_1111_501bins_1000cbins 0.974 0.996 0.952 0973
2400images_1111_501bins_100cbins 0.959 0.996 0.922 0.958
2400images_1111_501bins_10cbins 0.966 0.998 0.934 0.965
2400images_1111_501bins_500cbins 0.976 0.997 0955 0976
2400images_1111_501bins_50cbins 0.961 0.997 0.924 0.959

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudly Knox Library
Naval Postgraduate School
Monterey, California

53

